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In other words, the diagonal matrix element < nj�jn> yields the probability that the

state jn > is occupied in the ensemble represented by �. We can also refer the average

of a physical quantity A to the same basis:

[A] = Tr (�A) =
X
n;m

< nj�jm >< mjAjn >=
X
n;m

X
i

wi a
(i)
n a

(i)�
m Amn =

X
n;m

ana�m Amn :

If an operator B is diagonal in the given basis, i.e. < mjBjn >= Bn�mn, its average is

given by:

[B] =
X
i

wi
X
n

P (i)n Bn =
X
n

Bn janj2 :

For the continuous spectrum, we discuss the important cases of the coordinate

and momentum representations. The matrix elements of � now become two-point

functions. For the coordinate representation fj�!x>g, the linear coe¢ cients < �!x j (i) >

are called �wave functions�and usually, one writes

 (i)
��!x � =< �!x j (i) > ;

meaning that they vary continuously with ~x. Now, we represent the density operator:

< �!x j�j �!x 0 >= �
��!x ;�!x 0� =X

i

wi <
�!x j (i) ><  (i)j�!x 0 >=

=
X
i

wi  
(i)
��!x � (i)� ��!x 0� =  

��!x � � ��!x 0� : (1.21)

Diagonal elements are given by:

< �!x j�j �!x >= �
��!x ;�!x � =X

i

wi

��� (i) ��!x ����2 = �� ��!x ���2 = 0 : (1.22)
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In Quantum Mechanics,
��� (i) (~x)���2 is interpreted as a probability density, since normal-

ization requires Z
d�!x

��� (i) ��!x ����2 = 1 ;
where the integral is taken over all space. It follows that diagonal elements of �, given

by (1.22), are also probability densities, with

Tr (�)=

Z
d�!x < �!x j�j �!x >=

X
i

wi = 1 :

Average of an observable A is obtained integrating the two-point function �
��!x ;�!x 0� of

(1.21) with the matrix elements of A:

[A] = Tr (�A) =

Z
d�!x

Z
d�!x 0 < �!x j�j �!x 0 >< �!x 0 jAj �!x >=

=

Z
d�!x

Z
d�!x 0�

��!x ;�!x 0� A ��!x 0;�!x � : (1.23)

If the observable is local in the coordinate representation, A
��!x 0;�!x � = A

��!x � � ��!x 0��!x �,
where �

��!x 0��!x � is the Dirac delta function, the double integral (1.23) is reduced to
the single integration below:

[A] =

Z
d�!x �

��!x ;�!x � A ��!x � ;
i.e. the function A

��!x � is integrated with the probability density � ��!x ;�!x �. Note
that for a pure ensemble, �

��!x ;�!x � is simply given by  � ��!x � ��!x � = �� ��!x ���2, the
probability density associated with the wave function  

��!x �.
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We pass to the momentum representation replacing the wave function in real

space by the wave function in momentum space:

�(i)
��!p � =< �!p j (i) > :

All formulae can be translated to the new basis fj�!p>g. For instance, the probability

density associated with the diagonal matrix elements of � is obtained as:

< �!p j�j �!p >= �
��!p ;�!p � =X

i

wi

����(i) ��!p ����2 = ��� ��!p ���2 = 0 :
Due to the uncertainty principle, we are bound to use one basis only, but we can go

from one to the other, say from j�!x> to �!p>, with the transformation matrix [1], [2] :

< �!p j�!x>= 1

(2�~)3=2
exp

�
�i
�!p � �!x
~

�
: (1.24)

The classical density function that yields the density of points in phase space, is a

function of generalized coordinates and momenta, �(q; p). To make connection with

the classical case, one has to look for a mixed representation of the operator �. At

�rst sight, this may seem forbidden by the uncertainty principle, but one can follow a

procedure due to Wigner [5] to generate such a function.

Take for instance �
��!p ;�!p � and use the transformation (1.24) to pass to the

coordinate representation:

�
��!p ;�!p � = Z d�!x

Z
d�!x 0 1

(2�~)3
exp

i�!p �
��!x 0 � �!x �
~

�
��!x ;�!x 0� ;
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then make the change of variables with unit Jacobian:

�!r =�!x 0 � �!x ;

�!
R=1

2

��!x +�!x 0� :
We obtain

�
��!p ;�!p � = Z d

�!
R

Z
d�!r 1

(2�~)3
exp

�
i�!p � �!r
~

�
�

�
�!
R�

�!r
2
;
�!
R+

�!r
2

�
: (1.25)

The integrand in relation to
�!
R de�nes a function which depends on

�!
R and �!p , which

is of the mixed form and consistent with the uncertainty principle.

De�nition 6 Wigner function, �W

�W
��!x ;�!p � � 1

(2�~)3

Z
d�!r exp

�
i�!p � �!r
~

�
�

�
�!x�

�!r
2
;�!x+

�!r
2

�
(1.26)

In our deduction in (1.25), we have proved an important property of the Wigner func-

tion, which reads:

�
��!p ;�!p � = Z d�!x �W

��!x ;�!p � ; (1.27)

that is, the probability density �
��!p ;�!p � is obtained from theWigner function �W ��!x ;�!p �

integrating over the space variable �!x . The complementary relation is also true, and it

is left to the reader to prove its validity:

�
��!x ;�!x � = Z d�!p �W

��!x ;�!p � : (1.28)
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Relations (1.27) and (1.28) are desirable properties for a function to be candidate to

represent the classical density. But de�nition (1.26) is fully quantum mechanical, and

one has to take the limit in some non trivial way to get the classical case. In general,

one can show that the property

�W
��!x ;�!p � = 0

is not always satis�ed in the whole phase space
��!x ;�!p �. Regions where �W ��!x ;�!p � < 0

are said to contain coherent quantum e¤ects, the size of those regions shrinking with

~ ! 0. Formally, it was shown by Wigner [5] that �W satis�es the Liouville equation,

when ~ ! 0 (see next subsection). For a system consisting of N particles, de�nition

(1.26) can be generalized to the phase space � of a system of particles:

�
(N)
W

�
~x1; ~x2; :::; ~xN ; ~p1; ~p2; :::;

�!p N

�
� 1

(2�~)3
R R

:::
R
d3r1d

3r2:::d
3rN �

� exp
�
i
~p1 � ~r1 + :::+ ~pN � ~rN

~

� 

~x1�~r1

2
; :::; ~xN�~rN

2

��� ��~x1+~r1
2
; :::; ~xN+

~rN
2

�
:

(1.29)

B 1.5.1 Digression over the Gibbsian ensemble

We discuss here some key concepts concerning the classical density function �(q; p),

which was the goal of Wigner�s approach. In classical Statistical Mechanics, a mi-

crostate of a system of N particles is represented by a point in �phase space��. This is
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a 6N dimensional space spanned by the generalized coordinates and conjugate momenta

fqi; pig, that characterize the system. If we use cartesian coordinates,

fqig3N = (x1; y1; z1; :::; xN ; yN ; zN) :

From the macroscopic point of view, we operate with a reduced set of quantities that

are compatible with a great number of microstates, as for example the case of a gas

occupying a given volume, at standard conditions of temperature and pressure. In

Statistical Mechanics, we are not interested in the detailed motion of a system of

many particles, but we just want to calculate some average properties (thermodynamic

quantities) that we compute using an ensemble of ideal replicas of the same system.

The ensemble is then represented by a swarm of points in � space, being the points

interpreted as di¤erent microstates corresponding to di¤erent initial conditions of the

system, all satisfying the same macroscopic constraints. This idea was introduced

by Gibbs at the foundations of Statistical Mechanics, with the relevant quantity to

characterize the ensemble being the density of points in � space. Let �(qi; pi; t) be such

a distribution, with the notation meaning that � depends on all generalized coordinates

and momenta, and may also depend explicitly on time. In other words,

�(qi; pi; t)dq
3Ndp3N

is the number of representative system points (microstates) contained at time t in

the in�nitesimal volume d
 = dq3Ndp3N , with d
 centered about the point fqi; pig
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in phase space. Those representative points of the ensemble evolve in time, tracing a

trajectory in � space which is closed (periodic motion) or never autointersects itself.

Also, trajectories of di¤erent representative points never intersect, since they represent

motions with di¤erent initial conditions (if two trajectories intersect at a given point,

that common point may be chosen as a new initial condition, and the two trajectories

should coincide at all times). In Classical Mechanics, one can show that time evolution

is a canonical transformation [6], and volume of phase space is a canonical invariant (one

of Poincaré�s integral invariants). The number of representative points of the ensemble

contained in any in�nitesimal volume d
 is also constant in time. The form of the

in�nitesimal element changes, but its volume is constant. No representative point can

intersect the boundary of d
 at any time (same argument as given above). We then

can enunciate this result as a theorem:

Theorem 7 (Liouville) The density �(q; p; t) is constant in time, or

d�

dt
= 0 : (1.30)

We can rewrite the theorem (1.30) in a di¤erent form:

0 =
d�

dt
=
@�

@t
+
X
i

�
_qi
@�

@qi
+ _pi

@�

@pi

�
; (1.31)

showing that the explicit dependence on time is cancelled by the implicit dependence

through coordinates and momenta. For a Hamiltonian system, Hamilton equations of
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motion are satis�ed, with Hamiltonian H:

_qi =
@H

@pi
; _pi = �

@H

@qi
; (1.32)

which we substitute in (1.31), yielding:

0 =
d�

dt
=
@�

@t
+
X
i

�
@�

@qi

@H

@pi
� @�

@pi

@H

@qi

�
;

which is written in turn, in term of a Poisson bracket [6] as:

0 =
@�

@t
+ f�;Hg ; (1.33)

with the Poisson bracket de�ned as fA;Bg �
P

i

�
@A
@qi

@B
@pi
� @A

@pi

@B
@qi

�
. Relation (1.33)

is another way to state the Liouville theorem. It can be interpreted geometrically

[huang]: the motion of representative points in � space resembles closely the motion of

an incompressible �uid. In fact, relation (1.33) has the form of a continuity equation,

if one de�nes a current density for the �ux of points as:

�!
j � ��!v ;

with the velocity vector written as

�!v = ( _q1; _q2; :::; _q3N ; _p1; _p2:::; _p3N) :

Due to Hamilton equations of motion (1.32), we get

0 =
@�

@t
+ f�;Hg = @�

@t
+r��!j ;
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with the �nabla�operator de�ned in � space as:

r �
�
@

@q1
;
@

@q2
; :::;

@

@q3N
;
@

@p1
;
@

@p2
; :::;

@

@p3N

�
:

Then, local variations of � are caused by the �ux of the density current
�!
j , in any

neighborhood of representative points of the ensemble. Let A(q; p) be a dynamical

quantity of the system of particles. At the macroscopic level, the value of A that we

observed is supposed to be the average over the ensemble, calculated as

[A]C (t) =

R
dq3Ndp3N�(q; p; t) A(q; p)R

dq3Ndp3N�(q; p; t)
;

with the distribution �(q; p; t) satisfying Liouville theorem, and the symbol [:::]C stand-

ing for the classical average. In principle, the time dependence of [A]C (t) should ap-

proach its equilibrium value at the stationary situation:

@�

@t
= f�;Hg = 0 :

A stationary density distribution �(q; p) will only depend on time-independent integrals

of the equations of motion. The simplest assumption is to postulate that � is a function

of the total energyH = E, which is a conserved quantity. The equal a priori probability

distribution:

� = �(E) =

8>><>>:
constant; if E � 1

2
� < H < E + 1

2
� ;

0; otherwise
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is called microcanonical ensemble, and represents an isolated system. The quantity �

is chosen, such that �� E, and is introduced for convenience in the counting of states.

In the thermodynamic limit, macroscopic quantities are independent of �.

The question of how the system approaches such equilibrium state, is at the

heart of Statistical Mechanics, being one of the central problem in Physics since the

time of Boltzmann. We will discuss those issues in the next chapter. �
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